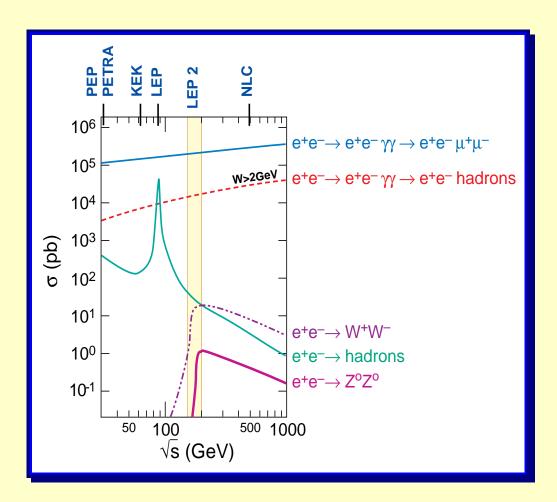

Production in Two-Photon Collisions Measurement of Inclusive Charm at LEP

Alan L. Stone

Louisiana State University


- Motivation
- Lepton Identification
- Theavy Flavor Production
- Direct & Resolved Processes
- J Summary & Outlook

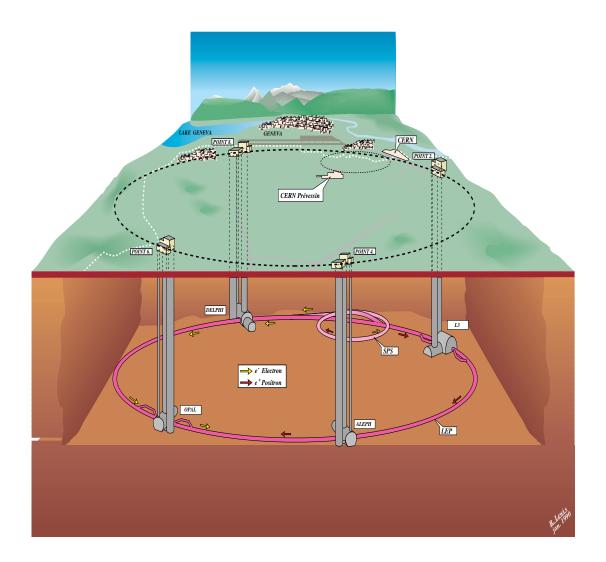
Two-Photon Interactions

- $\begin{array}{l} \bullet \ \ W_{\gamma\gamma}^2 = (\sum_h E_h)^2 (\sum_h \vec{p})^2 \\ \text{Invariant mass is typically small in a } e^+e^- \text{ collision} \\ \text{compared to center-of-mass energy } \sqrt{s} \end{array}$
- ${f Q_i^2}=-{f q_i^2}=2{f E_i}{f E_i'}(1-\cos\, heta_i)$ Anti-tag condition ($Q_i^2pprox 0$) real photons have a small transverse momentum, or virtuality

Two-Photon Interactions

• Annihilation Processes:

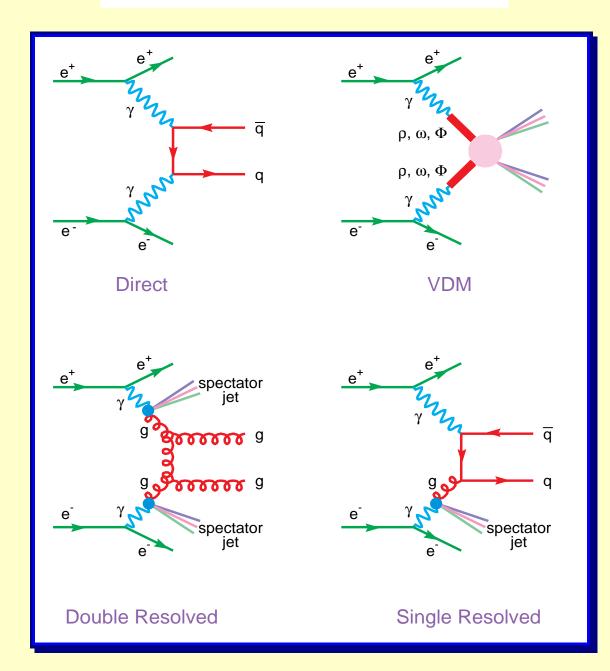
$$\sigma(e^+e^- o X) \propto 1/{
m s}$$


...except resonance production such as ${\cal Z}^0$

Two-Photon Processes:

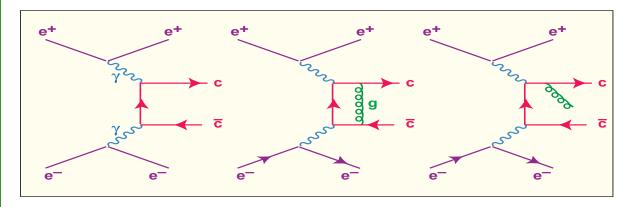
$$\sigma(e^+e^- \to e^+e^- X) \propto (\ln(s/m_{elec}^2))^2$$

• Background to other processes.


LEP Collider

ALEPH, DELPHI, L3, OPAL

- ullet LEP1: 1989 $1995
 ightarrow \sqrt{s} \simeq 91~ ext{GeV}$
- ullet LEP2: 1996 $2000
 ightarrow \sqrt{s} = 130$ $200~{
 m GeV}$
- Surpassed 200 pb 1 for the year 1999, with max. $\sqrt{s} \simeq$ 202 GeV!
- $\mathcal{L} > 450 \; \mathrm{pb}^{-1}$ to date Ahead of schedule!

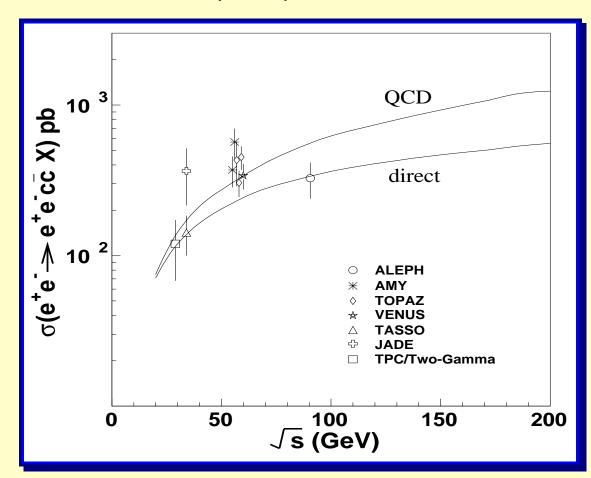

$\gamma\gamma$ Hadronic Production



• Direct and Single Resolved Processes dominant in $e^+e^- \to e^+e^- Q\bar Q$ production

Heavy Flavor Production

Beauty production suppressed relative to charm due of smaller charge and larger mass



- Direct process depends on m_c (m_b) and α_s
- Resolve process also depends on gluon content of the photon

Contribution from Direct and Resolved processes are predicted to be comparable at LEP2 energies

Theoretical Cross Section

Next-to-Leading (NLO) Calculations

Ref: M.Drees, M.Kramer, J.Zunft & P.M. Zerwas Physics Letters B 306 (1993) 371

- \mathbf{D}^* tagging: $\mathbf{D}^{*\pm} \to \mathbf{D^0} \pi^{\pm}$ (TPC/2 γ , TASSO, JADE, TOPAZ, AMY, ALEPH)
- Semileptonic decays: c → s W*

$$\hookrightarrow \ell + \nu$$

(TOPAZ, AMY, VENUS)

Hadron Calorimeter Vertex Detector Crown Door The L3 Detector Barrel Yoke Main Coil BGO Calorimeter Silicon Detector **Outer Cooling Circuit Muon Detector Inner Cooling Circuit**

Excellent resolution for e, μ, γ measurements

Louisiana State University

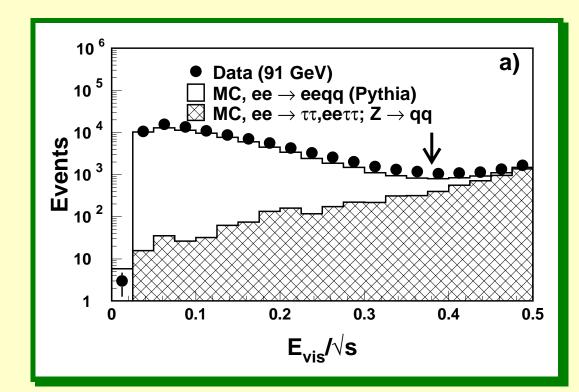
Hadronic Two-Photon Selection

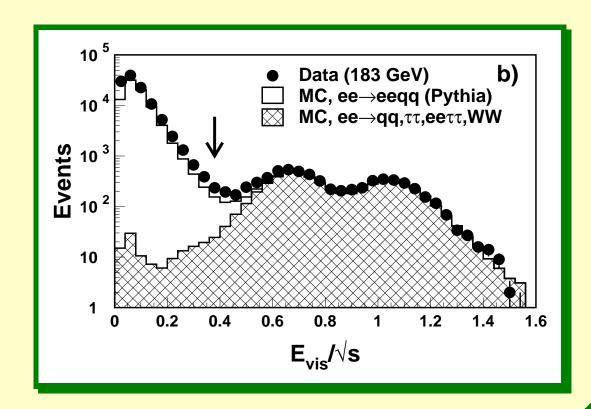
- ullet ${
 m W_{vis}}>3$ ${
 m GeV}$ reduces light quark $\gamma\gamma$ bkg
- ullet ${f E_{total}}/\sqrt{{f s}}<{f 0.38}$ removes single γ ann.
- ullet $N_{tracks} \geq 5$ removes $\ell^+\ell^-$ bkg
- ullet $E_{Lumi}/E_{Beam} < 0.4$ anti-tag condition

$\sqrt{\mathrm{S}}$	\mathcal{L}	Events	BKG
(GeV)	(pb^{-1})		(%)
91	80	93204	2.4
136	12	21045	0.2
167	21	44444	0.2
183	52	116760	0.2
189	176	399755	0.1

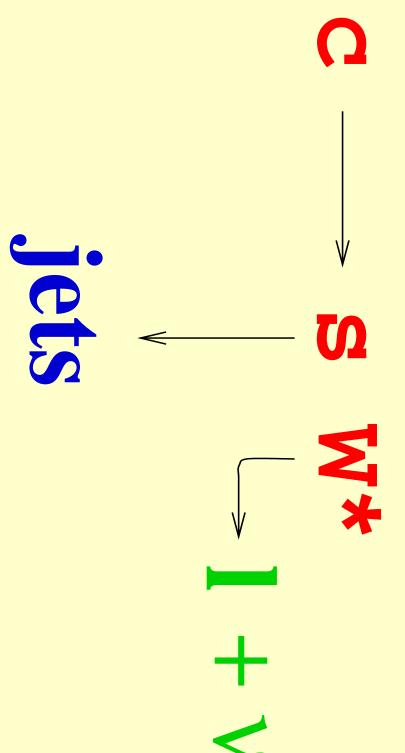
☐ MC: PYTHIA version 5.722

$$e^+e^- \rightarrow e^+e^-q\bar{q}$$


LO Calculations with $W_{
m gen}>3~{
m GeV}$


 $egin{array}{l} egin{array}{l} egin{array}{l} \mathcal{L}_{\gamma\gamma} \; ext{EPA} \; (\mathbf{Q^2} < 1 \; ext{GeV}) \ & ext{Real Photons} \end{array}$

□ Background Sources


$$\begin{array}{ll} \mathbf{e^+e^-} \rightarrow \mathbf{Z}/\gamma \rightarrow \mathbf{q} \mathbf{\bar{q}} & \text{(JETSET/PYTHIA)} \\ \mathbf{e^+e^-} \rightarrow \tau^+\tau^- & \text{(KORALZ)} \\ \mathbf{e^+e^-} \rightarrow \mathbf{W^+W^-} & \text{(KORALW)} \\ \mathbf{e^+e^-} \rightarrow \mathbf{e^+e^-}\tau^+\tau^- & \text{(DIAG36)} \end{array}$$

Hadronic Two-Photon Selection

Semi-Leptonic Decay of Charm

Louisiana State University

Lepton Selection

Muon Selection

$$|\cos \theta| < \mathbf{0.90}$$

$$\mathbf{P}_{\mu}>\mathbf{2}\,\,\mathbf{GeV}$$

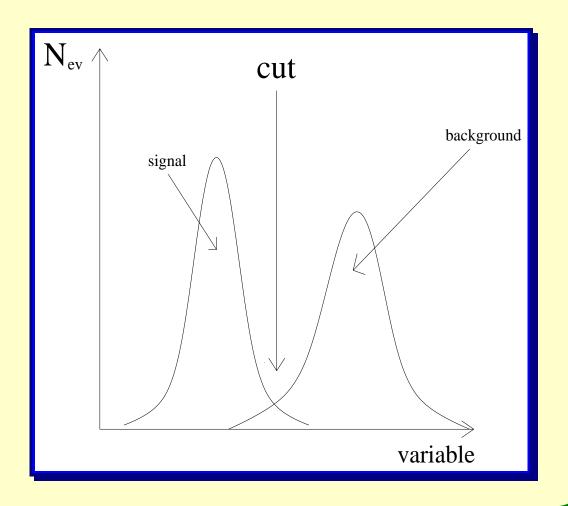
$$\mathbf{P}_{\mu} < \mathbf{0.2} \; \mathbf{E_{Beam}}$$

Electron Selection

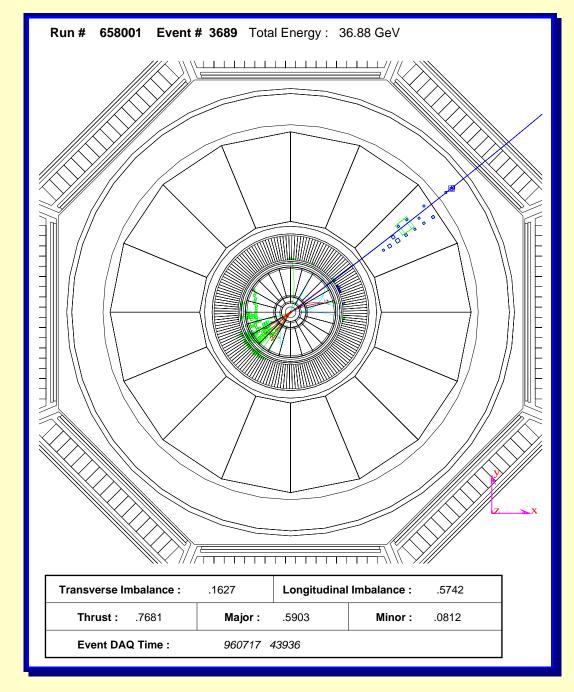
$$|\cos \theta| < \mathbf{0.90}$$

$$E_e>0.6\ GeV$$

$$\Delta \phi < 20 \text{ mrad}$$

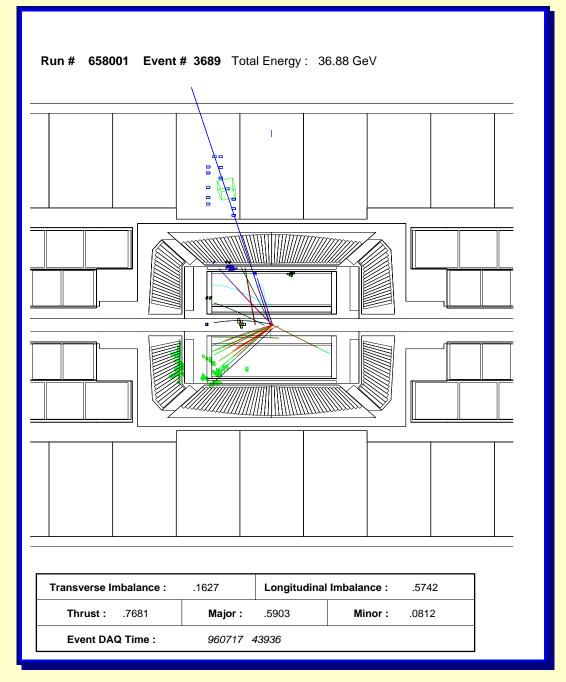

$$|\mathrm{DCA}| < 0.5 \mathrm{\ mm}$$

$$\chi^{\mathbf{2}}_{\mathbf{EM}} < \mathbf{3}$$

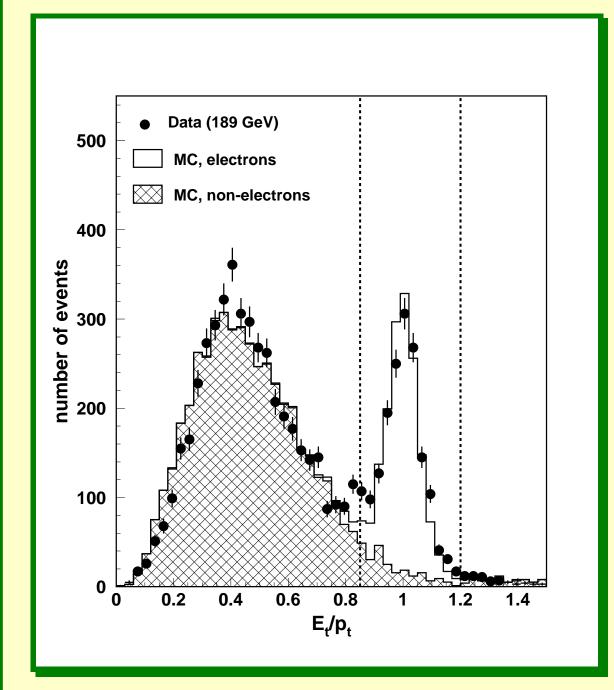

$$\mathbf{E_1/E_9} > \mathbf{0.5}$$

$${
m E_9/E_{25}} > 0.95$$

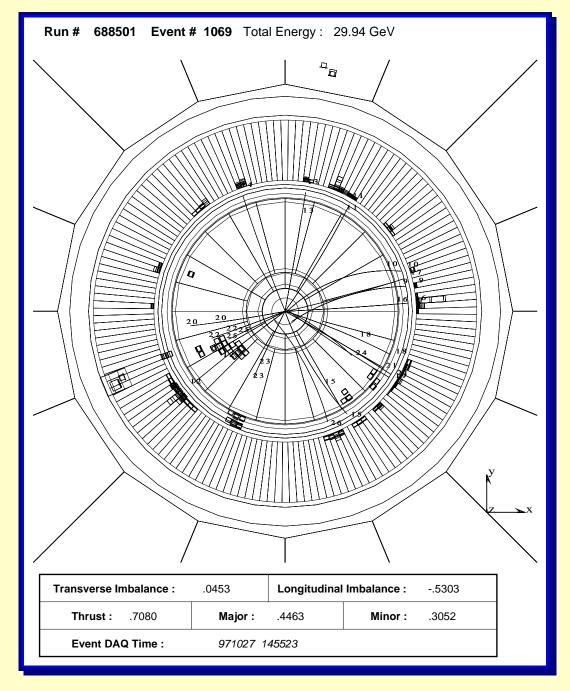
$$0.85 < {
m E_T/p_T} < 1.2$$



Muon Candidate


Transverse view of a two-photon muon-tagged event

Muon Candidate


Longitudinal view of a two-photon muon-tagged event

Electron Selection

1710 events; electron purity 85%.

Electron Candidate

Transverse view of a two-photon electron-tagged event

 $p=2.3~{
m GeV}$ and $\phi=3^\circ$

Lepton Selection Summary

Electrons

189	183	167	136	91	$\sqrt{\mathbf{s}}$
1710	433	156	82	282	N_{OBS}
268	273	112	45	252	N_{EXP}
14.7	4.1	1.5	0.5	29.5	N_{BKG}
199.4	50.5	22.8	8.4	37.1	N_{conv}
0.86	0.86	0.85	0.84	0.84	$\mathbf{P_e}$
0.100	0.100	0.096	0.084	0.097	$\epsilon_{\mathbf{e}}$

	√s 91	Nobs 57	NEXP 45	P	(P NBKG 16.9
S	167	16	15		1.4
	183	52	39		1.4

0.33

0.33

N_{BKG}: Background from annihilation processes and two-photon production of tau pairs

185.3

N_{conv}: Electrons from photon conversions

• $P_e(P_\mu)$: Electron (Muon) purity

 $\epsilon_{\mathbf{e}}$ (ϵ_{μ}) : Electron (Muon) selection efficiency

Inclusive Charm Cross Section

$$e^+e^-
ightarrow e^+e^-c\overline{c}X$$

$$\sigma = \frac{(\mathbf{N_{obs}^{lept} - N_{bkg}^{lept}}) \ \pi_{\mathbf{c}}}{\mathcal{L} \ \epsilon_{\mathbf{trig}} \ \epsilon_{\mathbf{c}}'}$$

$$\pi_{
m c} = rac{
m N_c^{
m lept}}{
m N_c^{
m lept} + N_{
m nc}^{
m lept}}$$

..to be less dependent on Monte Carlo flavor composition (charm and non-charm)...

$$\pi_{\mathbf{c}} = (1 - \frac{\epsilon_{\mathbf{nc}}}{\epsilon_{\mathbf{d}}})/(1 - \frac{\epsilon_{\mathbf{nc}}}{\epsilon_{\mathbf{c}}})$$

$$\epsilon_{
m d} = rac{
m N_c^{
m lept} + N_{
m nc}^{
m lept}}{
m N_c^{
m had} + N_{
m nc}^{
m had}} = rac{
m N_{
m obs}^{
m lept} - N_{
m bkg}^{
m lept}}{
m N_{
m obs}^{
m had} - N_{
m bkg}^{
m had}}$$

$$rac{ ext{N_c^{lept}} + ext{N_{nc}^{lept}}}{\epsilon_{ ext{d}}} = rac{ ext{N_c^{lept}}}{\epsilon_{ ext{c}}} + rac{ ext{N_{nc}^{lept}}}{\epsilon_{ ext{nc}}}$$

had: after hadronic two-photon selection

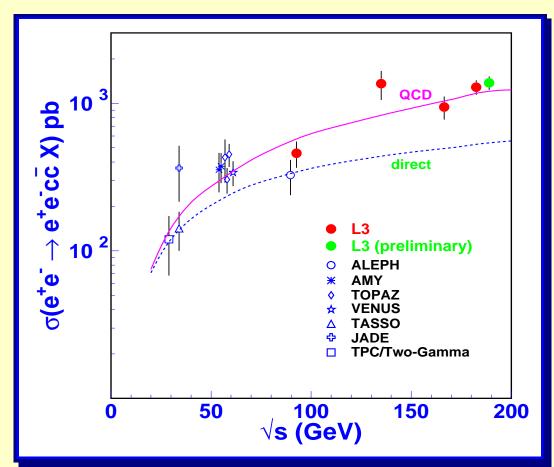
lept: after final selection with lepton tag

Charm Analysis Summary

Electron Tag

$\textbf{46.0} \pm \textbf{1.8}$	$\textbf{66.6} \pm \textbf{1.6}$	14.7	1710	176.	189
53.3 ± 2.6	65.9 ± 2.2	4.1	433	52.2	183
52.6 ± 3.3	60.0 ± 3.2	1.5	156	21.2	167
42.0 ± 4.0	70.0 ± 3.4	0.5	82	12.1	136
42.2 ± 3.4	50.5 ± 4.9	29.5	282	79.8	91
$[\mathbf{10^{-2}\%}]$	π _c ^e [%]	$rac{N_{ m bkg}^{ m e}}{ extsf{Events}}$	$rac{N^{ m e}_{ m obs}}{ extsf{Events}}$	$\mathcal{L} \\ [\mathrm{pb}^{-1}]$	$\sqrt{\mathrm{s}}$ [GeV]

Muon Tag

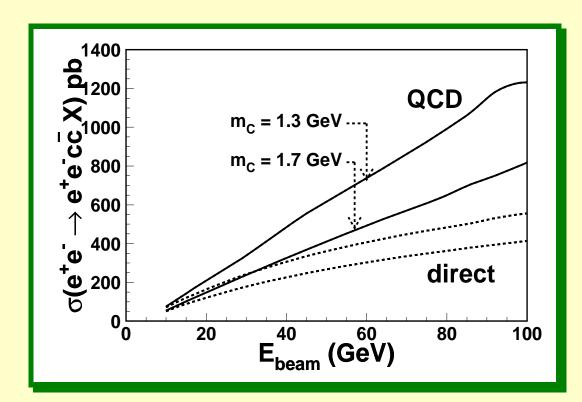

$\sqrt{\mathrm{s}}$	$[\mathrm{pb}^{-1}]$	N _{obs} Events	N ^{\(\rho_{bkg}\)} Events	π _c ^μ [%]	$[10^{-2}\%]$
91	79.8	57	15.9	70.6 ± 8.8	\pm 6.43
167	21.2	16	1.41	48.3 ± 10.1	6.48 ± 1.01
183	52.2	52	1.38	61.7 ± 6.8	\pm 65.5
189	176.	208	17.9	$\textbf{63.8} \pm \textbf{6.7}$	$\textbf{6.93} \pm \textbf{0.49}$

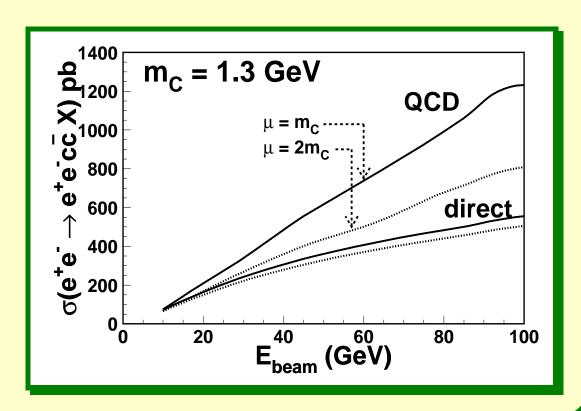
20

Inclusive Charm Cross Section

$$\Box$$
 e⁺e⁻ \rightarrow e⁺e⁻ cc̄ (Electron Tag)
 $\sigma_{91 \ GeV} = 435 \pm 64 \text{ (stat)} \pm 76 \text{ (syst)} \text{ [pb]}$
 $\sigma_{136 \ GeV} = 1358 \pm 243 \text{ (stat)} \pm 180 \text{ (syst)} \text{ [pb]}$
 $\sigma_{167 \ GeV} = 1009 \pm 152 \text{ (stat)} \pm 106 \text{ (syst)} \text{ [pb]}$
 $\sigma_{183 \ GeV} = 1291 \pm 105 \text{ (stat)} \pm 122 \text{ (syst)} \text{ [pb]}$
 $\sigma_{189 \ GeV} = 1599 \pm 60 \text{ (stat)} \pm 174 \text{ (syst)} \text{ [pb]}$

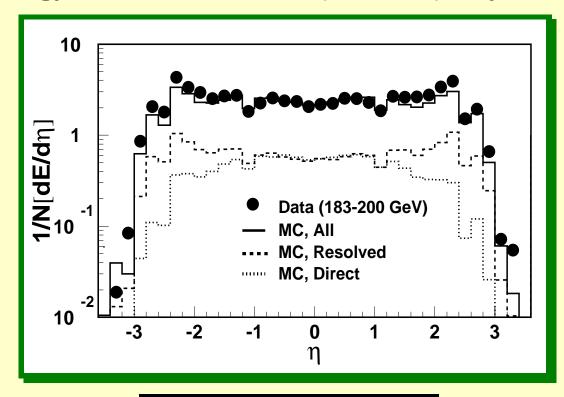
Total Inclusive Charm Cross Section


PL B453 88 (1999)


$$e^+e^- \rightarrow e^+e^-c\bar{c}X$$

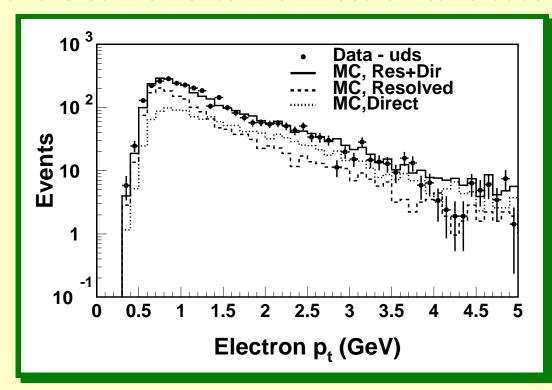
$$\sigma_{91~{
m GeV}} = 459 \pm 60~{
m (stat)} \pm 75~{
m (syst)}~{
m [pb]}$$
 $\sigma_{136~{
m GeV}} = 1358 \pm 243~{
m (stat)} \pm 180~{
m (syst)}~{
m [pb]}$
 $\sigma_{167~{
m GeV}} = 936 \pm 140~{
m (stat)} \pm 100~{
m (syst)}~{
m [pb]}$
 $\sigma_{183~{
m GeV}} = 1287 \pm 100~{
m (stat)} \pm 114~{
m (syst)}~{
m [pb]}$
 $\sigma_{189~{
m GeV}} = 1378 \pm 55~{
m (stat)} \pm 134~{
m (syst)}~{
m [pb]}$

Prediction is calculated using $m_c=1.3~GeV$ Renormalization scale chosen to be the charm mass


Charm Quark Mass

Direct & Resolved Contributions

Energy flow as function of pseudorapidity

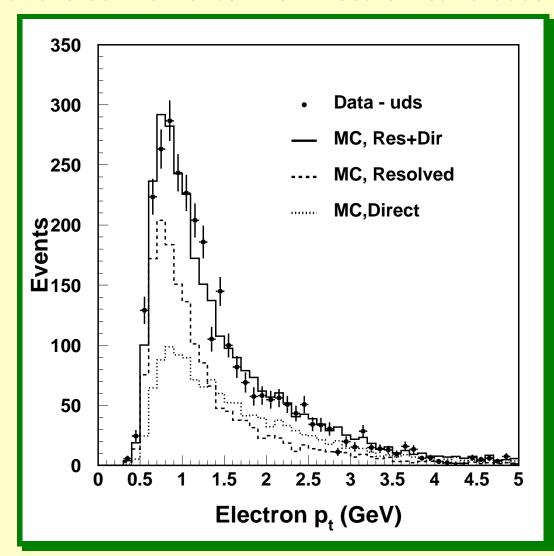

$$\eta = -\ln[\tan(\frac{\theta}{2})]$$

- $\eta = 1.0 \Longrightarrow \theta \simeq 40^{\circ}$
- $\eta = 1.5 \Longrightarrow \theta \simeq 25^{\circ}$
- $\eta = 2.0 \Longrightarrow \theta \simeq 15^{\circ}$

Resolved process has small angle remnant jet Need resolved to describe the data

Direct & Resolved Contributions

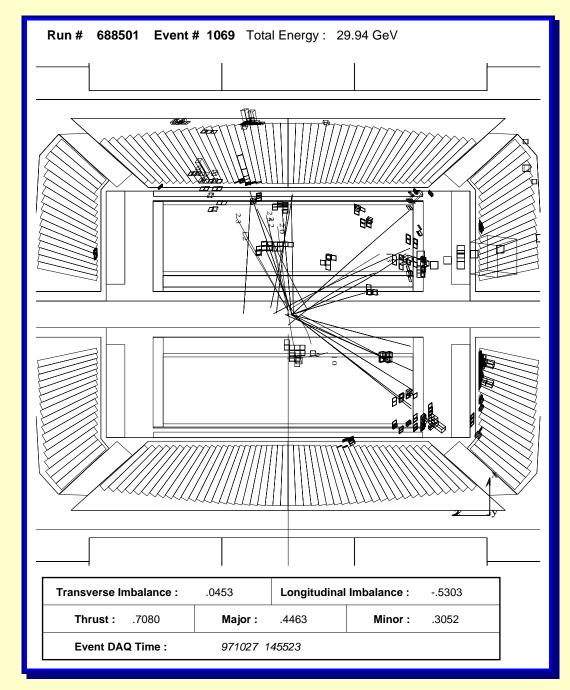
Transverse momentum of Electron candidate



- MC prediction for non-charm (uds) subtracted from the data
- Resolved and direct MC predictions normalized to final number of data - uds events

two-thirds Resolved & one-third Direct

Direct & Resolved Contributions

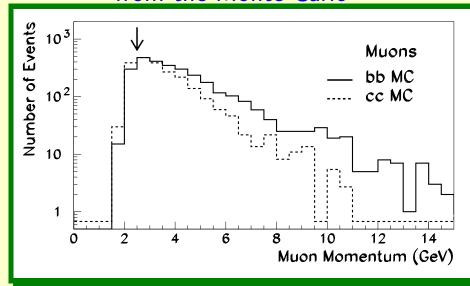

Transverse momentum of Electron candidate

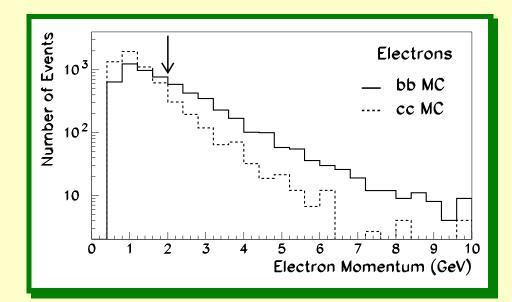
- MC prediction for non-charm (uds) subtracted from the data
- Resolved and direct MC predictions normalized to final number of data - uds events

two-thirds Resolved & one-third Direct

Electron Candidate

Longitudinal view of a two-photon electron-tagged event

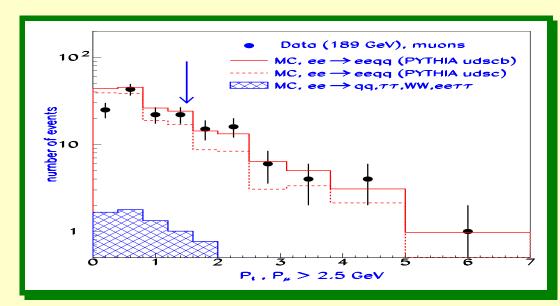

3 jets: Resolved remant or Gluon Radiation

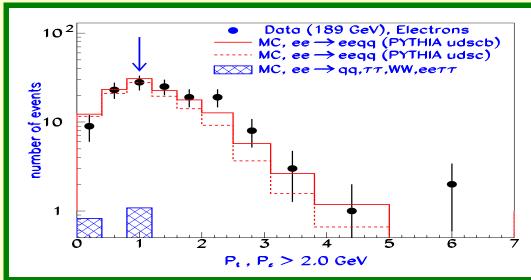

p=2.3 GeV and $\theta=73^{\circ}$

Search for Beauty

Tag b by semi-leptonic decay to e or μ

Momentum of Lepton Candidate from the Monte Carlo

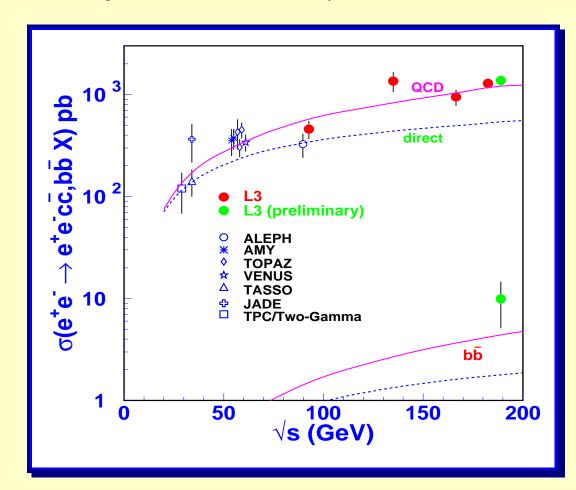




Leptons from beauty decays have higher momentum than from charm

Search for Beauty

p_t with respect to the nearest jet



$$\begin{array}{ll} {\rm P_t} > & 1.5 \; {\rm GeV} & {\rm P_t^e} > & 1 \; {\rm GeV} \\ {\rm N_{ev}^{\mu}} = & 49 & {\rm N_{ev}^e} = & 96 \\ {\varepsilon_b^{\mu}} = & 0.9\% & {\varepsilon_b^e} = & 1.6\% \\ {\Pi_b^{\mu}} = & 34\% & {\Pi_b^e} = & 28\% \end{array}$$

Leptons from beauty decays have higher p_t

Beauty Production

Preliminary measurement at $\sqrt{s}=189~{\rm GeV}$

$e^+e^- \rightarrow e^+e^-b\bar{b}X$

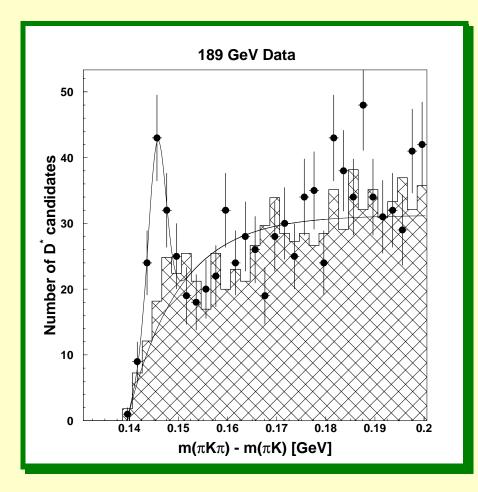
Muons: $b\bar{b} = 10.3$ 4.6(stat) 3.3 (syst) pb

Electrons: $b\bar{b} = 9.6$ 3.6(stat) 4.1 (syst) pb

Combined: $b\bar{b} = 9.9$ 2.9(stat) 3.8 (syst) pb

• Theory prediction from M. Drees, M. Krämer, J. Junft and P.M. Zerwas, PL **B306** 371 (1993) $m_c=1.3~{\rm GeV},\ m_b=5.0~{\rm GeV}.$

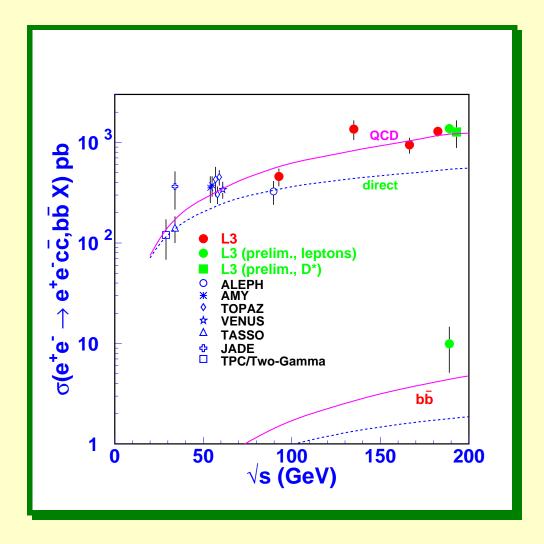
D* Production in $\gamma\gamma$ Collisions


Search for
$$D^{*\pm} \to D^0 \pi_s^\pm \to (K^\mp \pi^\pm) \pi_s^\pm$$

Selection:

1: Select hadronic two-photon events

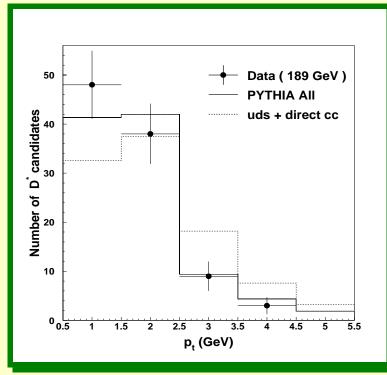
2: π_s : momentum and vertex cuts

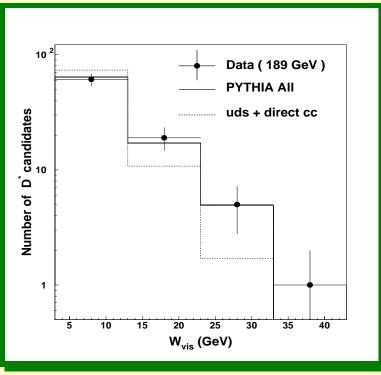

3: D^0 : 2 tracks (compatible with $K^{\pm}\pi^{\mp}$ by dE/dx) Select window for D^0 mass: $1.8 < M_{K\pi} < 1.93$

Signal Events: 66 ± 10 $\varepsilon_{D^*}=0.049\%$ $\Pi_{D^*}=70\%$

D* Production in $\gamma\gamma$ Collisions

$$\sigma = \frac{\mathbf{N_{\mathrm{obs}}^{D^{*\pm}}}}{\mathcal{L} \ \epsilon_{\mathrm{trig}} \ \epsilon_{\mathbf{D}^{*\pm}} \ \mathbf{2} \ \mathbf{P}(\mathbf{c} \rightarrow \mathbf{D}^{*+})}$$

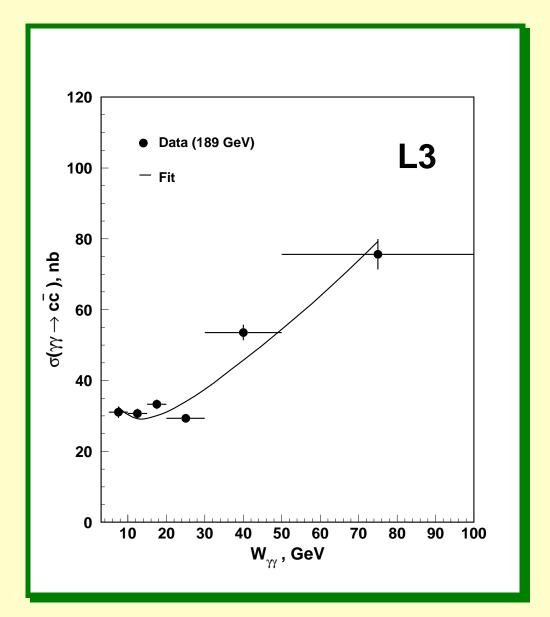



Preliminary Result at $\sqrt{s}=189~{
m GeV}$ $\sigma=1269\pm185~{
m (stat)}\pm343~{
m (syst)}$ pb

D* result consistent with lepton tags and QCD

D* Production in $\gamma\gamma$ Collisions

L3 Preliminary


Summary

- \Box Measured $\sigma(e^+e^-\to e^+e^-c\bar{c}X)$ in the center-of-mass range of 91 GeV $~\leq~\sqrt{s}~\leq~189$ GeV
- \square Cross section \Uparrow with \sqrt{s} as expected by QCD prediction
- insufficient to describe the data. Need resolved processes ☐ Direct process, even with real and virtual gluon corrections, is
- \Longrightarrow Data require a significant gluon content in the photon
- charm mass. Perform fit on p_t , visible mass and jets Direct contribution to cross section dependent only on the
- $\sqrt{s} = 189$ GeV. Consistent with QCD. \square Measured beauty production for first time in $\gamma\gamma$ collisions at
- \Box Unfolding $\gamma\gamma$ cross section for charm
- $\sqrt{s} \simeq 202 \; GeV$. \square More data... $\mathcal{L}~>~200~pb^{-1}$ in 1999 alone, with

$$\sigma(\gamma\gamma \to c\bar{c})$$

L3 Preliminary

 $W_v is > 5 \ GeV$

Observed slope rises more quickly with energy than expected universal Regge behavior of total hadronic crosss section